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Abstract

Thermal residual!stresses introduced during manufacture and their e}ect on the natural frequencies and
vibration modes of stringer sti}ened composite plates is investigated[ The principal idea in the work is to
include sti}eners on the perimeter of a composite plate in which the laminate design of the sti}eners and
plate are di}erent[ Such an arrangement yields manufacturing induced thermal residual!stresses^ these
stresses result from the di}erence in manufacturing and operating temperatures as well as the di}erence in
thermal expansion coe.cients and elastic properties of the plate and the sti}eners[ The analysis is based on
an enhanced ReissnerÐMindlin plate theory and involves two separate calculations[ In the _rst\ the thermal
residual!stress state is determined for an unconstrained plate[ In the second\ the free vibration problem is
solved^ thermal e}ects from the _rst calculation are included by way of nonlinear membrane!bending
coupling which in turn de_nes the free vibration reference state[ The problem is solved using a 05!node bi!
cubic Lagrange element in a _nite element formulation[ Three di}erent plate!sti}ener geometries are used
to illustrate the e}ects of stringer size\ stringer placement and temperature di}erence[ Two principal results
are obtained] _rst\ it is shown that thermal residual!stresses can have a signi_cant e}ect on the natural
frequencies^ secondly\ thermal residual!stresses can be tailored to increase natural frequencies[ Therefore it
is concluded that an evaluation of these stresses and a judicious analysis of their e}ects must be included in
the design of this class of composite structures[ Þ 0888 Elsevier Science Ltd[ All rights reserved[
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ðDŁ constitutive matrix between middle!surface linear strains and resultant forces
ðDGŁ constitutive matrix between middle!surface non!linear strains and resultant forces
"e# vector of linear strain components
"eG# vector of non!linear strain components
"f¹# vector of edge tractions
I moment of inertia
ðIŁ inertia matrix
ðKŁ global sti}ness matrix
ðKŁp sti}ness matrix for p!th element
ðKR

GŁ global geometric sti}ness matrix
ðKR

GŁp geometric sti}ness matrix for p!th element
L Lagrangian
m mass per unit area
"M#t vector of resultant moments
ðMŁ global mass matrix
ðMŁp mass matrix for p!th element
n number of elements in _nite element model
"N#t vector of resultant forces
ðNŁ matrix of interpolation functions
ðQŁ matrix of material sti}nesses
T kinetic energy
u¹ displacement in x!direction
u middle!surface displacement in x!direction
"u¹# vector of displacements
U strain energy
v¹ displacement in x!direction
v middle!surface displacement in y!direction
w¹ displacement in x!direction
w middle!surface displacement in z!direction
W work of external forces
zk z!coordinate of the top of the k!th layer
"a¹# vector of thermal expansion coe.cients
"d# global vector of nodal displacements
"dp# vector of nodal displacements for p!th element
DT change in temperature
"o¹# vector of strain components
"o¹L# vector of linear strain components
"o¹N# vector of non!linear strain components
"k# vector of middle!surface curvatures
F total potential energy
cx middle!surface rotation variable in x!direction
cy middle!surface rotation variable in y!direction
r mass density
"s¹R# vector of thermal residual stresses
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0[ Introduction

It is well established that initial and:or residual stresses a}ect the ~exural sti}ness and in turn
the dynamic and stability characteristics of isotropic plates\ Herrmann and Armenakas "0859#\
Brunelle and Robertson "0863#[ Similar results are also true for laminated plates as demonstrated
by Yang and Shieh "0876# and recently by Almeida and Hansen "0885#[

The residual stresses in a plate may result from external applied loads\ from environmental
e}ects such as temperature or moisture absorption or a combination of environmental e}ects and
boundary constraints[ Such stresses may also arise during the manufacture of a plate because of
elevated processing temperatures[ Whitney and Ashton "0860# and\ more recently\ Sai Ram and
Sinha "0881# analyzed environmental e}ects on the vibration characteristics of composite plates[
These investigations dealt with stresses which develop because of boundary constraints when a
laminated composite plate is subjected to temperature changes and moisture absorption[ These
problems have direct practical application for situations in which the structure providing the
boundary constraint to the plate is not a}ect by such environmental changes[

On the other hand\ very signi_cant thermal residual!stresses may be introduced in composite
structures during the manufacturing process and nominally similar structures may have sig!
ni_cantly di}erent residual!stress states[ For example\ thermal residual stresses in stringer
reinforced plates:shells are very di}erent if the structure is manufactured using co!cured methods
in contrast to secondary bonding techniques[ Such residual stresses and their implications are
seldom included in structural design and analysis[ In a recent paper\ Almeida and Hansen "0885#
have demonstrated very conclusively that the presence of such manufacturing stresses may sub!
stantially a}ect the elastic buckling response of sti}ened composite plates[ That result leads to the
present work[

The thermal residual!stresses considered here arise during manufacture and are a consequence
of the anisotropy of advanced composite materials[ The thermal expansion coe.cient of unidi!
rectional graphite:epoxy composites is\ for example\ typically close to zero in the direction of the
_bers and relatively large in the transverse direction[ Therefore\ thermal residual!stresses develop
in a plate as it is cooled from the processing "cure\ consolidation or bonding# temperature to room
or operating temperature[ It is important to emphasize that even in the presence of thermal
residual!stresses\ the in!plane thermal residual stress!resultants of classical plate theory are zero if
there are no external constraints and if the composite design is invariant over the domain of the
plate[ Therefore\ for this class of problem and within the context of linear!elastic\ classical plate
theory the residual stresses do not lead to any changes in elastic response[ On the other hand\ these
stress resultants are in general non!zero if the composite design varies over the plate domain^ for
example if the laminate is non!homogeneous "a function of x\ y# in the plane or contains non!
uniformities such as stringers[

The objective of this work is to investigate the e}ect of manufacturing!introduced thermal
residual!stresses on the free vibration response of stringer!reinforced composite plates^ it is assumed
that the thermoelastic design of the stringer and plate are di}erent[ Furthermore\ it is assumed
that the string!plate combination is co!cured and therefore the mismatch between the coe.cient
of thermal expansion of the stringer and plate results in thermal residual!stresses[ The magnitude
of these stresses depends on a number of factors such as plate and stringer geometry and design\
physical properties of the composite materials\ processing temperature and operating temperature[
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The idea is to design a plate in which the thermal residual!stresses improve structural characteristics[
In the present case\ the thermal residual!stress state will be used to increase the natural frequencies
of simply supported plates[

The scope of this work is restricted to the analysis of problems with no membraneÐbending
coupling^ the out!of!plane deformations resulting from the elevated temperature processing of
laminates with membraneÐbending coupling leads to totally di}erent analysis requirements[ Lami!
nates with membraneÐbending coupling in general exhibit out!of!plane de~ections at a temperature
below the processing temperature[ This means that at the operating temperature\ the plate vibrates
about a deformed\ non!~at con_guration[ In such a situation\ the vibration analysis must be taken
with respect to a curved reference state[ Based on curved panel analysis\ to do otherwise would
beg to introduce signi_cant errors[ The e}ect of thermal residual curvatures are not accounted for
in the present analysis and the behaviour of non!symmetric laminates is therefore beyond the scope
of the present work[ This limitation should not be regarded as a major restriction as it does not
a}ect conclusions of this work[

The analysis of the problem is based on a _nite element formulation using a 05!node bi!cubic
Lagrange element[ ReissnerÐMindlin plate theory is used to solve the thermal and the free vibration
problem for three di}erent sti}ened!plate geometries[ The calculations indicate that natural fre!
quencies can be signi_cantly increased by properly tailoring the residual stresses[

1[ Problem formulation

The solution of the problem involves two steps[ In the _rst\ thermal residual!stresses are
determined^ in the second\ the free vibration problem is solving including the sti}ening due to the
thermal residual!stresses obtained in the _rst step[ All calculations are based on laminated ReissnerÐ
Mindlin plate theory[

A linear analysis is used to determine the distribution of thermal residual!stresses resulting
from processing[ For this calculation\ the plate!sti}ener assembly is assumed to be completely
unconstrained^ thus residual stresses arise only from the thermal coe.cient of expansion mis!
matches either through the thickness of the laminate or due to spatial variations in the thermal
coe.cient of expansion[

A full nonlinear formulation is used to determine the reference state for the free vibration
analysis[ Thus the stress sti}ening due to the thermal residual!stresses is included in the subsequent
free vibration analysis[ The free vibration problem is solved as a linear eigenvalue problem which
yields natural frequencies and associated vibration modes[

1[0[ Kinematic relations

A symmetrically!laminated\ stringer!reinforced composite plate is considered[ Each lamina is
assumed to be orthotropic\ homogeneous\ linear elastic and is oriented at an angle u measured
counter!clockwise with respect to the x!axis[

The Mindlin plate model is adopted Mindlin "0840#[ Therefore\ the in!plane displacement _elds
u¹\ v¹ are assumed to vary linearly through the plate thickness and the transverse displacement w¹ is
assumed constant through the plate thickness[ Throughout this work\ an overline indicates a
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quantity at an arbitrary point "x\ y\ z# in the plate and quantities without the overline are de_ned
on the xÐy plane at the plate middle!surface[ Using this notation the assumed displacement _eld
is written as]

u¹ "x\ y\ z# � u"x\ y#¦zcx"x\ y#

v¹"x\ y\ z# � v"x\ y#¦zcy"x\ y#

w¹ "x\ y\ z# � w"x\ y# "0#

where u\ v and w are the middle!surface displacements in the x!\ y! and z!directions\ respectively\
while cx and cy are rotation like variables in the x!\ y!directions\ respectively[

The strain vector is represented as the sum of linear and non!linear components]

"o¹# � "o¹L#¦"o¹N# "1#

Based on the non!linear strainÐdisplacement relations\ Novozhilov "0842#\ the linear strain
components are given by]

o¹L
x � u\x¦zkxx

o¹L
y � v\y¦zkyy

g¹L
xy � u\y¦v\x¦zkxy

g¹L
xz � w\x¦cx

g¹L
yz � w\y¦cy "2#

where kij are the middle!surface curvatures of the plate de_ned as

kxx � cx\x

kyy � cy\y

kxy � cx\y¦cy\x "3#

Also\ "o# is used to represent the vector of in!plane linear strain components]

"o#T � ðu\x v\y u\y¦v\xŁ "4#

The non!linear strain components\ expressed in terms of the displacements\ are]

o¹N
x � 0

1
ð"u1

\x¦v1
\x¦w1

\x#¦1z"u\xcx\x¦v\xcy\x#¦z1"c1
x\x¦c1

y\x#Ł

o¹N
y � 0

1
ð"u1

\y¦v1
\y¦w1

\y#¦1z"u\ycx\y¦v\ycy\y#¦z1"c1
x\y¦c1

y\y#Ł

g¹N
xy � "u\xu\y¦v\xv\y¦w\xw\y#¦z"u\xcx\y¦u\ycx\x¦v\xcy\y¦v\ycy\x#¦z1"cx\xcx\y¦cy\xcy\y#

g¹N
xz � "u\xcx¦v\xcy#¦z"cxcx\x¦cycy\x#

g¹N
yz � "u\ycx¦v\ycy#¦z"cxcx\y¦cycy\y# "5#

In the above and in the following\ a subscript following a comma indicates partial di}erentiation
with respect to that variable[
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Strain at any point in the plate can be described in terms of the middle!surface strains using
eqns "2#Ð"5#[ Therefore\ a middle!surface linear strain vector\ "e#\ and a vector of the components
of the non!linear strain terms\ "eG# are de_ned as]

"e#T � ðu\x v\y u\y¦v\x kxx kyy kxy w\x¦cx w\y¦cyŁ "6#

"eG#T � ðu\x u\y v\x v\y w\x w\y cx\x cx\y cy\x cy\y cx cyŁ "7#

1[1[ Thermal problem

The _rst step in the analysis is the computation of the thermal residual!stresses in the plate[
When calculating the thermal residual!stresses\ it is assumed that] the plate is totally unconstrained\
there are no mechanical loads\ there is no membraneÐbending coupling in the laminate and the
analysis is linear[ "No nonlinear geometric e}ects[#

Since it is assumed that strainÐdisplacement relation is linear\ the stressÐstrain relations including
thermal e}ects become

"s¹# � ðQÞŁ""o¹L#−DT"a¹## "8#

where ðQÞŁ are the material sti}nesses in structural coordinates^ "o¹L# is the vector of total strains^
"a¹# is the vector of lamina thermal coe.cients of expansion "expressed in structural coordinates#
and DT is the change in temperature[ The expressions for ðQÞŁ and "a¹# in terms of lamina elastic
properties are given by Jones "0864#[

It is to be noted that the material properties are in general functions of temperature and at
elevated temperatures viscoelastic:creep e}ects are to be expected[ These e}ects are not considered
here but may be important in practical applications[ However\ results are presented for a range of
DT and these illustrate that the e}ects being investigated are insigni_cant for a broad range of DT[
The viscoelastic:creep e}ects can be accounted for approximately if the value of DT is regarded as
the di}erence between the room temperature and an {equivalent processing temperature|[

Thermal residual stresses are determined by seeking a stationary value of the total potential
energy when the system is subject only to a thermal change[ That is]

Ft �
0
1 gA

"e#T ðDŁ"e# dA−DT gA

""o#"N#t¦"k#"M#t# dA "09#

where the superscript on Ft indicates thermal[ In the above\ A is the area of the plate\ ðDŁ is the
constitutive matrix relating the stress resultants and the middle!surface strains\ while "N#t and
"M#t are thermal load vectors[

Matrix ðDŁ is de_ned by]

ðDŁ � &
ðAŁ ðBŁ ð9Ł

ðBŁ ðDŁ ð9Ł

ð9Ł ð9Ł ðA�Ł' "00#

where
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"Aij\ Bij\ Dij# � s
K

k�0 g
zk

zk−0

ðQÞijŁk"0\ z\ z1# dz i\ j � 0\ 1\ 5 "01#

and

A�ij � s
K

k�0 g
zk

zk−0

ðQÞijŁk dz i\ j � 3\ 4 "02#

where K is the total number of lamina and zk−0\ zk are the coordinates of the bottom and top of
the k!th layer with respect to the plate middle!surface[

The thermal load vectors are de_ned as\ Jones "0864#]

"N#t � DT s
K

k�0

ðQÞŁk"a¹#k"zk−zk−0# "03#

and

"M#t � DT s
K

k�0

ðQÞŁk"a¹#k

"z1
k−z1

k−0#
1

"04#

It must be noted that\ even though this work is restricted to laminates with no membraneÐ
bending coupling\ the above formulation includes the membraneÐbending coupling matrix\ ðBŁ\
and thermal moments\ "M#t[ These entities were introduced in the formulation for completeness[
The bending thermal residual!stress resultants "M#t and matrix ðBŁ are identically zero for all the
problems analysed in this work[

The _nite element calculation solves the thermal displacement _eld corresponding to a stationary
value of eqn "09#^ then\ the thermal residual!stresses in the plate are obtained by back substituting
into eqn "8#[

1[2[ Free vibration problem

The second step in the problem is the free vibration analysis[ This calculation is considered as a
linear perturbation about a nonlinear reference state which results from the previous thermal
calculation^ in this way the e}ects of the initial thermal residual!stresses are incorporated in the
vibration problem[

The equations of motion for the plate can be derived from Hamilton|s principle[ The Lagrangian\
L\ is given by]

L � T−F "05#

where T is the kinetic energy and F is the potential energy of the plate[ In turn F � U−W where
U is the strain energy and W is the work of the applied forces[

In the free vibration problem\ the stresses at any point in the plate are given by]

"s¹# � ðQÞŁ"o¹#¦"s¹R# � ðQÞŁ"o¹¦o¹R# "06#

where "s¹R#\ "o¹R# are the thermal residual stresses and strains\ respectively\ while "o¹# is the total
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strain resulting from the vibrational motion[ Matrix ðQÞŁ is the constitutive relation in xyz reference
axes for the particular lamina under consideration[

The potential energy of the plate can be computed from]

F � U−W �
0
1 gv

"o¹¦o¹R#T"s¹# dv−gs

" f¹ #T"u¹# ds "07#

where v is the entire volume of the plate and s is its surface^ "u¹# are the displacements\ and " f¹ #
are the edge tractions[

No edge tractions are present in the free vibration problem and therefore\ W 0 9 and F � U[
Substituting eqn "1# and "06# into eqn "07#\ neglecting higher!order terms and using the fact that
"s¹R# correspond to a state of equilibrium\ yields the result]

U �
0
1 gv

"o¹L#T ðQÞŁ"o¹L# dv¦gv

"o¹N#T"s¹R# dv "08#

The strain energy is now integrated through the thickness "with respect to z# after using eqns
"2#\ "3# and "5#[ The resulting expression can be written in terms of the middle!surface strain
vector\ "e# and the components of the non!linear strain terms\ "eG# de_ned\ respectively\ in eqns
"6# and "7#[ Equation "08# becomes]

U �
0
1 gA

"e#T ðDŁ"e# dA¦
0
1 gA

"eG#T ðDR
GŁ"eG# dA "19#

where matrix ðDŁ represents the constitutive relation between the stress resultants and the middle!
surface strains as given in eqn "00#[

The terms in eqn "19# involving the subscript G refer to the strain energy due to the coupling
between linear and non!linear terms[ The linear terms refer to the thermal residual stresses indicated
by superscript R[ It can be shown that matrix ðDR

GŁ is given by]

ðDR
GŁ �

K

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

k

NR
x NR

xy 9 9 9 9 MR
x MR

xy 9 9 QR
x 9

NR
xy NR

y 9 9 9 9 MR
xy MR

y 9 9 QR
x 9

9 9 NR
x NR

xy 9 9 9 9 MR
x MR

xy 9 QR
y

9 9 NR
xy NR

y 9 9 9 9 MR
xy MR

y 9 QR
y

9 9 9 9 NR
x NR

xy 9 9 9 9 9 9

9 9 9 9 NR
xy NR

y 9 9 9 9 9 9

MR
x MR

xy 9 9 9 9 LR
x LR

xy 9 9 TR
x 9

MR
xy MR

y 9 9 9 9 LR
xy LR

y 9 9 TR
y 9

9 9 MR
x MR

xy 9 9 9 9 LR
x LR

xy 9 TR
x

9 9 MR
xy MR

y 9 9 9 9 LR
xy LR

y 9 TR
y

QR
x QR

x 9 9 9 9 TR
x TR

y 9 9 9 9

9 9 QR
y QR

y 9 9 9 9 TR
x TR

y 9 9

L

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

l "10#
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The following stress resultants were used in the de_nition of matrix ðDR
GŁ]

"NR
ij \ MR

ij \ LR
ij # � s

K

k�0 g
zk

zk−0

s¹R
ij "0\ z\ z1# dz ij � xx\ yy\ xy "11#

and

"QR
i \ TR

i # � s
K

k�0 g
zk

zk−0

s¹R
iz "0\ z# dz i � x\ y "12#

It should be noted that LR
ij are higher!order moments of the stress about the plate middle!surface^

these stress resultants are in general non!zero[ Also\ the kinematic hypotheses imply that the stress
resultants TS

i are identically zero for symmetrically laminated plates^ they may be non!zero for
non!symmetric laminates[ These latter terms are included in the formulation only for the sake of
completeness[

The kinetic energy of the plate is]

T �
0
1 gv 8

ul

vl

wl
9
T

8
ul

vl

wl
9 r dv "13#

where r is the mass density[ Since the mass distribution is uniform over the plate cross!section\ the
kinetic energy can be written in terms of the middle!surface displacements as]

T �
0
1 gA

F

G

G

g

G

G

f

u¾

v¾

w¾

c¾ x

c¾ y

JT

G

G

h

G

G

j

K

H

H

H

H

H

k

m 9 9 9 9

9 m 9 9 9

9 9 m 9 9

9 9 9 I 9

9 9 9 9 I

L

H

H

H

H

H

l

F

G

G

g

G

G

f

u¾

v¾

w¾

c¾ x

c¾ y

J

G

G

h

G

G

j

dA "14#

where

"m\ I# � g
zK

z9

"0\ z1#r dz "15#

2[ Finite element formulation

The problem formulated in the previous section was solved using a _nite element method[ A 05!
node isoparametric bi!cubic element using Lagrange interpolation functions was developed and
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Fig[ 0[ Bi!cubic Lagrange isoparametric element[

implemented in a FORTRAN code[ Figure 0 shows the geometry of the element[ The nodal
variables are the displacements and rotations] u\ v\ w\ cx\ and cy[ Therefore\ each element has a
total of 79 degrees!of!freedom[ The displacements at an arbitrary point within the domain of the
p!th element are given by]

"d#T � ðu v w cx cyŁ � ðNŁ"d#p "16#

where ðNŁ is a matrix of interpolation functions[ Matrix ðNŁ has dimensions 4×79[ Vector "d#p

contains the 79 element nodal variables arranged as]

"d#T
p � ðu0 v0 w0 cx0 cy0 u1 [ [ [ cy04 u05 v05 w05 cx05 cy05Ł "17#

The vector of strains at the middle!surface of the plate can be expressed as]

"e# � ðBŁ"d#p "18#

where matrix ðBŁ is a 7×79 matrix that contains derivatives of the interpolation functions Ni with
respect to variables x and y[ Matrix ðBŁ can be derived from eqn "2#\ "3#\ "16#\ and "18#[ The
derivatives of the interpolation functions with respect to coordinates x and y were computed in
terms of derivatives of the interpolation functions with respect to the element coordinates j and h\
shown in Fig[ 0[ A general quadrilateral cubic isoparametric element was implemented[ This allows
the representation of complex geometries with a small number of elements[ Similarly\ the vector
of components of the non!linear strain terms\ "eG#\ can be computed as]

"eG# � ðBGŁ"d#p "29#

where matrix ðBGŁ is a 01×79 matrix that contains derivatives of the interpolation functions Ni

with respect to variables x and y[ Matrix ðBGŁ can be derived from eqns "7#\ "16#\ and "29#[ Again\
matrix ðBGŁ was computed for a general quadrilateral element[

The element sti}ness and geometric sti}ness matrices are computed from the matrices de_ned
above[ The sti}ness matrix of the p!th element is given by]
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ðKŁp � gA

ðBŁT ðDŁ ðBŁ dA "20#

The area integration of the p!th element is carried out numerically using 3×3 Gauss quadrature[
A shear correction factor of 4:5 is used for all laminates[ It should also be noted that the present
element formulation does not su}er from shear locking and no special techniques or reduced
integration are required\ Heppler and Hansen "0875#[

Similarly\ the element geometric sti}ness matrix incorporating the thermal residual!stresses for
the p!th element is given by]

ðKR
GŁp � gAp

ðBGŁT ðDR
GŁ ðBGŁ dA "21#

The geometric sti}ness matrices ðKR
GŁp are calculated assuming a thermal stress state corresponding

to the di}erence between the room temperature and the processing temperature[ These matrices
are also determined using 3×3 Gauss quadrature[ As noted earlier\ as a _rst step the thermal
problem is solved and from these results the stress is determined at each Gauss point^ this is the
information required to compute the matrix ðDR

GŁ[
The expression for the plate strain energy can now be rewritten using an approximation based

on the _nite element discretization[ Equation "19# therefore\ becomes]

Un �
0
1

s
n

p�0

"d#T
p ðKŁp"d#p¦

0
1

s
n

p�0

"d#T
p ðKR

GŁp"d#p "22#

where n is the total number of elements in the model[
The element mass matrix is derived from eqns "14# and "16# and yields the result]

ðMŁp � gAp

ðNŁT ðIŁ ðNŁA "23#

where the inertia matrix ðIŁ is]

ðIŁ �

K

H

H

H

H

H

k

m 9 9 9 9

9 m 9 9 9

9 9 m 9 9

9 9 9 I 9

9 9 9 9 I

L

H

H

H

H

H

l

"24#

Using these de_nitions\ the kinetic energy becomes]

Tn �
0
1

s
n

p�0

"d¾#T
p ðMŁp"d¾#p "25#

Global matrices consistent with the boundary conditions of the problem are generated using
conventional _nite element techniques[ Applying Hamilton|s principle yields the equations of
motion for the plate^ assuming that the problem is unforced and that the solution is periodic yields
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the free vibration problem[ This equation is an eigenvalue problem in terms of the vector of
unknown nodal displacements\ "d#]

"ðKŁ¦ðKR
GŁ−v1 ðMŁ#"d# � "9# "26#

where ðMŁ\ ðKŁ\ and ðKR
GŁ are the global matrices for the plate[ The natural frequencies and

corresponding vibration modes are the solution of the this problem^ here it is solved using the
subspace iteration algorithm\ Bathe and Wilson "0865#[

3[ Vibration of plates with tailored thermal residual stresses

The numerical procedure implemented is suitable for the evaluation of the free vibration response
of symmetric composite laminates in the presence of thermal residual!stresses[ As noted earlier\
behaviour of non!symmetric laminates is beyond the scope of the present work[

3[0[ Types of reinforced plates analyzed

A square graphite:epoxy plate with stringer reinforcement is considered for illustrative purposes[
The plate and stringer designs lead to non!homogeneous sti}ness and thermal coe.cients over the
problem domain which introduces non!zero thermal residual stress resultants[

The basic laminate for the analysis is a ð9:89Łs[ Since only symmetric plates are considered\ the
reinforcement is always placed symmetrically along the edges of the plate and is of uniform width
b[ The concept is to use reinforcement made of unidirectional laminates because they have high
sti}ness and nearly zero thermal expansion coe.cient^ the plate itself will be designed with lower
sti}ness but with a larger thermal coe.cient of expansion[ It is assumed the structure is stress free
at the processing temperature and that residual stresses develop during the cooling phase to room
temperature[ During the cooling process\ the reinforcement contracts less than the plate and resists
the tendency of the plate to shrink[ This e}ect causes tensile residual!stresses in the plate and
compressive residual stresses in the reinforcement[ The distribution of the residual stresses depends
on the material properties\ lay!up sequence of plate and reinforcement as well as the geometric
arrangement of the reinforcement[ The resulting distribution of residual stresses may be either
bene_cial or detrimental to the mechanical behaviour of the plate depending on the particular
problem under consideration[

Three di}erent types of reinforced plates are considered[ The reinforcement used for plates types
I and II consists of four unidirectional plies of width b placed on both sides of a ð9:89Łs laminate[
In plate type I the reinforcement is placed on the outer edges of the plate parallel to the y!axis with
the _bers parallel to the y axis[ In plate type II the reinforcement is placed around the perimeter
of the plate forming a symmetric frame around the plate and the _bres are oriented parallel to the
appropriate side of the plate[ Figure 1 illustrates the geometry and lamination sequence for each
of the con_gurations considered[

The con_gurations chosen for plates types I and II were designed to allow an assessment of the
in~uence of the distribution of thermal residual stress resultants[ In plate type I the thermal residual
stress resultants are particularly high near the edges of the reinforcement[ They tend to be zero at
the center of the plate due to Saint Venant e}ects and large stress gradients are present[ On the
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Fig[ 1[ Types of reinforced plates analyzed[

other hand\ plate type II is stretched everywhere in both directions due to the frame constraint[
The stress distribution is more uniform without large gradients[

The plate types analyzed and the nomenclature used are summarized in Table 1[ Four di}erent
reinforcement widths b were considered for plates types I and II] 07\ 16\ 34 and 52 mm[ These
numbers are used as identi_ers in conjunction with the pre_xes R "reinforcement*plate type I#
and F " frame*plate type II# as shown in the table[ These values correspond to a reinforcement
width of 09\ 04\ 14 and 24) of the total plate width\ respectively[

Both of these con_gurations can be easily manufactured and are of practical signi_cance[
However\ direct comparison of the natural frequencies of various type I and II plates is not
meaningful because the structural mass is di}erent for each situation as the volume of reinforcement
varies with reinforcement width and the type of reinforcement[ Therefore\ in order to present a
meaningful comparison\ the _rst natural frequencies of plates types I and II are normalized with
respect to the _rst natural frequency of a uniform thickness ð9:89Łs plate having the same mass as
the reinforced plate under consideration[ That is\ the lamina thickness of the reference ð9:89Łs plate
is adjusted such that the masses of the reinforced and reference plates are the same[

A third con_guration\ plate type III\ was designed to take advantage of the fact that ð9:89Łs and
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Table 0
Material properties used for T299:4197 graphite!epoxy

Property Value

Longitudinal modulus of elasticity\ E0 043\499 MPa
Transverse modulus of elasticity\ E1 000\29 MPa
In!plane Poisson|s ratio\ n01 9[293
In!plane shear modulus\ G01 5879 MPa
Transverse shear modulus\ G02 5879 MPa
Transverse shear modulus\ G12 2259 MPa
Longitudinal thermal expansion coe.cient\ a0 −9[06e!95>C−0

Transverse thermal expansion coe.cient\ a1 12[0e!95>C−0

Ply thickness\ t 9[04 mm
Mass density\ r 0[45 g:cm2

Table 1
Plate descriptions

Designation Type b "mm#

R07 I 07
R16 I 16
R34 I 34
R52 I 52

F07 II 07
F16 II 16
F34 II 34
F52 II 52

M9 III 9
M0 III 34
M1 III 89
M2 III 024
M3 III 079

ð893Ł square plates of the same dimensions have equal _rst natural frequencies[ The idea was to
form a plate with a central section composed of a ð9:89Łs laminate combined with two ð893Ł edge
strips[ The edge strips are parallel to the y!axis and are both of width b\ forming a square plate as
shown in Fig[ 1[ Unlike the type I and II plates\ the total mass of the type III plates is independent
of the width b and equal to the total mass of a homogeneous ð9:89Łs laminated plate of the same
thickness[ Therefore\ direct comparisons of natural frequencies for the various cases can be made[

Table 1 summarizes the type III plates analyzed and the nomenclature used to describe them[
The two limiting cases are when b � 9 "plate M9# and b � 079 "plate M3# correspond to con!
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ventional ð9:89Łs and ð893Ł laminated plates\ respectively[ The type III plates were analyzed for _ve
di}erent cases^ that is b � 9\ 34\ 89\ 024\ 079 mm\ respectively "plates M9\ M0\ M1\ M2\ M3\
respectively#[ It is noted that the middle three plates M0\ M1 and M2 are composed of both
laminates ð9:89Łs and ð893Ł[ Also\ in this sequence of problems the proportion of the ð893Ł laminate
increases linearly from 9Ð099) from plate M9ÐM3[ Conversely the proportion of the ð9:89Łs
laminate decreases linearly from 099Ð9) in the same sequence[

As an aside\ it should be mentioned that although the analyses of the type III plates provides
an interesting insight into the problem\ these plates are impractical because of the low!strength
interface between the three strips of the sub!laminates[

3[1[ Numerical results

The plate is discretized into 05 elements arranged in a 3×3 rectangular array[ This yields a
model with a total of 058 nodes and takes advantage of problem symmetry[ Only one fourth of
the plate is modelled and three di}erent models are analyzed] one for symmetric modes in both
the x! and y!directions^ one for a symmetric mode in the x!direction and an anti!symmetric mode
in the y!direction^ and one for an anti!symmetric mode in the x!direction and a symmetric mode
in the y!direction[ The possibility of anti!symmetric modes in both the x! and y!directions was not
analyzed as this always lead to a higher natural frequency that was not of interest[

The material considered for all analyses is graphite:epoxy T299:4197^ the properties are given
in Table 0\ Adams et al[ "0877#[ The _nite element analysis is based on the assumption that the
material properties do not vary with temperature[ Therefore\ a linear thermoelastic problem is
solved to compute the thermal residual stress resultants[ This approximation is reasonable for
most engineering applications and represents an upper bound on reality[ A more realistic deter!
mination of the residual stresses would account for the variation of the material properties with
temperature\ Adams et al[ "0877# and incorporate a thermochemical model of the cure process\
Ciriscioli and Springer "0889# or a model of the consolidation process\ Domb and Hansen "0883#[

The boundary conditions used for the solution of the thermoelastic problem provide no con!
straint other than to eliminate rigid!body motion[ The solution of the free vibration problem
assumes simply supported conditions on all edges of the plate^ the application of these boundary
conditions imposes no additional residual stresses on the problem[

The natural frequencies and vibration modes of all plates listed in Table 1 were calculated[ The
idea was to study the in~uence of the reinforcement type and width as well as the e}ect of
temperature on the natural frequencies[ In what follows\ the temperature di}erence\ T\ is given as
a positive number and should be understood to be the di}erence between an elevated temperature
at which the plate and reinforcement are stress free "cure\ consolidation\ or secondary bonding
temperature# and a lower temperature "operating or room temperature# of the structure[

The reinforcement type primarily a}ects the distribution of thermal residual stress resultants[
This is illustrated in Figs 2a and 2b[ "Only one fourth the plate is shown because of the symmetry
of the problem[# The results compare the distribution of thermal residual stress resultants NR

y in
plates F07 and R07 for a temperature di}erence of 049>C[ It can be seen that in plate R07 the
distribution of the stress resultant NR

y exhibits large gradients near the edge of the reinforcement[
It should be noted that plate F07\ in which the reinforcement forms a frame around the perimeter
of the plate\ yields a smoother stress distribution than plate R07[ Furthermore\ the stress resultant
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Fig[ 2[ "a# Distribution of thermal residual stress resultants NR
y on plate R07 for a temperature di}erence of 049>C[

"b# Distribution of thermal residual stress resultants NR
y on plate F07 for a temperature di}erence of 049>C[
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NR
y is positive everywhere which is reminiscent of a pretensioned drum!membrane and which

contributes to an increase of the plate natural frequency[
The existence of thermal residual!stresses a}ects the vibration modes as well as the natural

frequencies of the plate[ The thermal residual!stresses vary linearly with the temperature di}erence^
however\ the thermal residual!stresses a}ect each vibration mode di}erently[ Therefore\ as the
temperature di}erence is changed the vibration mode may also change[ As an example\ Figs 3a
and 3b show the _rst vibration modes for plate R34 for T � 9 and T � 049>C\ respectively[ Again\
only one fourth of the plate is shown because of symmetry[ It may be noted that although the
mode shapes have changed very little\ there has been a dramatic change in natural frequency[

The normalized _rst natural frequencies as a function of the temperature di}erence for plates
with reinforcement type I are presented in Fig[ 4[ It can be seen that the variation of the normalized
_rst natural frequency with temperature di}erence is approximately independent of the reinforce!
ment width\ b\ within the range considered here[ The normalized _rst natural frequencies of the
plates increase by approximately 49) as the temperature di}erence increases from 9Ð049>[

Figure 5 shows the normalized _rst natural frequencies for plates with reinforcement type II[ It
can be seen that the _rst natural frequencies increase dramatically with temperature di}erence[
Again\ the variation of the normalized _rst natural frequency with temperature di}erence is
approximately independent of the reinforcement width\ b\ within the present range[ The normalized
_rst natural frequency for T � 049>C is typically twice the value for T � 9>C[ Comparing Figs 4
and 5\ it may be concluded that with a small temperature di}erence\ plates with reinforcement
types I have a slightly higher structural e.ciency in terms of _rst natural frequency than plates
with reinforcement type II^ however\ as the temperature di}erence increases reinforcement type II
becomes more e.cient[ This result is due to the di}erences in the thermal residual!stress states[

The e}ect of the residual stresses on the higher natural frequencies for plates with reinforcement
types I and II are shown in Figs 6aÐd[ Figure 6a presents the variation of the _rst three natural
frequencies of plates R07 and F07 with temperature di}erence[ It can be seen that the change in
the higher natural frequencies is not as pronounced as for the _rst natural frequency[ Also\ the
e}ect of temperature di}erence on the natural frequencies is signi_cantly smaller in plate R07 than
in plate F07[ Clearly\ the distribution of thermal residual stresses in plate F07 is more favourable[

In the particular case of plate R07\ the _rst natural frequency increases by 41) as the temperature
di}erence increases from 9Ð049>C while in comparison\ the second and third natural frequencies
increase by 07 and 19)\ respectively\ for the same interval[ On the other hand\ the _rst natural
frequency of plate F07 increases by 84) as the temperature di}erence increases from 9Ð049>C
while the second and third natural frequencies increase by 65 and 24)\ respectively[ Thus it seems
the gains in the higher frequencies\ while still very signi_cant\ are smaller than those for the _rst
natural frequency[ Figures 6bÐd illustrate a similar set of results for plates R16\ R34 and R52\
respectively[

The _rst natural frequencies of plates with type III reinforcement are compared in Fig[ 7 for
various temperature di}erences[ Since plates M9 and M3 are homogeneous their vibration response
shows no dependence on the temperature di}erence[ On the other hand\ the thermal residual!
stresses present on plates M0\ M1 and M2 strongly in~uence their _rst natural frequencies[ These
results show that the thermal residual!stresses have a bene_cial e}ect on the vibrational behaviour
of plate M0[ On the other hand\ the _rst natural frequency of plate M1 initially increases with the
temperature di}erence and then starts decreasing[ Furthermore\ the thermal residual stresses also
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Fig[ 3[ "a# First vibration mode for plate R34 for a temperature di}erence of 9>C[ "b# First vibration mode for plate
R34 for a temperature di}erence of 049>C[
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Fig[ 4[ Normalized _rst natural frequencies of plates R07\ R16\ R34 and R52 as a function of the temperature di}erence T[

Fig[ 5[ Normalized _rst natural frequencies of plates F07\ F16\ F34 and F52 as a function of the temperature di}erence T[
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Fig[ 6[ "a# Natural frequencies of plates R07 and F07 as a function of the temperature di}erence T[ "b# Natural
frequencies of plates R16 and F16 as a function of the temperature di}erence T[
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Fig[ 6[ "c# Natural frequencies of plates R34 and F34 as a function of the temperature di}erence T[ "d# Natural
frequencies of plates R52 and F52 as a function of the temperature di}erence T[
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Fig[ 7[ First natural frequencies of plates M9\ M0\ M1\ M2 and M3 for di}erent values of the temperature di}erence T[

exhibit a detrimental e}ect on the _rst natural frequency of plate M2[ In fact\ if this plate is
processed above a critical temperature\ T ¼ 099>C\ it buckles as a result of the thermal stresses
and the _rst natural frequency is zero;

4[ Conclusions

The analyses presented here demonstrate that thermal residual!stresses resulting from the elev!
ated temperature manufacture of composite structures may strongly a}ect natural frequencies[
Both the distribution and magnitude of the thermal residual!stresses have been shown to be
important[ In fact\ the _rst natural frequency can be doubled or reduced to zero as a result of
thermoelastic structural e}ects[ Whether these e}ects are bene_cial or detrimental depends on
factors such as geometry\ boundary conditions\ material properties and design[ However it is seems
clear that\ independent of the speci_c plate geometry\ it is possible to use the thermal residual
e}ects to increase natural frequencies[

Based on the results of the present work\ it is suggested that\ through appropriate design and
analysis\ thermal residual!stresses may be tailored to enhance a range of the response characteristics
of composite structures[ As an example\ Almeida and Hansen "0885# have demonstrated that
thermal residual!stresses may also be used to e}ectively improve the buckling behaviour of
reinforced composite plates[ The design process to capitalize on thermoelastic e}ects involves the
choice of the ply orientation\ the position and geometry of stringer reinforcement\ and the fab!
rication process[ Therefore it also seems that the inclusion of thermoelastic e}ects within opti!
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mization procedures would be very e}ective for the determination of the design parameters that
maximize the composite structural performance[

Finally\ it should be emphasized that the simple cases analyzed in this work were speci_cally
chosen to demonstrate the potential increases in natural frequencies[ However\ actual designs of
composite structures require a comprehensive analysis of overall structural behaviour[ Tensile
thermal residual!stresses may be bene_cial for vibration and other elastic behaviour^ however\ these
stresses may have detrimental e}ects on strength and damage tolerance of composite structures[
Therefore\ the maximum possible gain in the natural frequency or other structural characteristic
may be limited by requirements on overall structural performance[ Such a view points even
more strongly toward the implementation of the present type of thermoelastic analysis within an
optimization capability to truly capitalize on the full range of enhancement possibilities[
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